Riesz Bases of Reproducing Kernels in Small Fock Spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1786 - 0091 Complete Interpolation Vs . Riesz Bases of Reproducing Kernels

In the study of Hilbert spaces of analytic functions, it is noticed that complete interpolating sequences and Riesz bases of reproducing kernels are dual notions. In this work we make this duality explicit by identifying sequences of complex numbers with linear operators.

متن کامل

New characterizations of fusion bases and Riesz fusion bases in Hilbert spaces

In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new denition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we dene the fusion biorthogonal sequence, Bessel fusion basis, Hil...

متن کامل

On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules

In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...

متن کامل

Asymptotic Behaviour of Reproducing Kernels of Weighted Bergman Spaces

Let Ω be a domain in Cn, F a nonnegative and G a positive function on Ω such that 1/G is locally bounded, Aα the space of all holomorphic functions on Ω square-integrable with respect to the measure FαGdλ, where dλ is the 2n-dimensional Lebesgue measure, and Kα(x, y) the reproducing kernel for Aα. It has been known for a long time that in some special situations (such as on bounded symmetric do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2020

ISSN: 1069-5869,1531-5851

DOI: 10.1007/s00041-019-09719-4